https://doi.org/10.48195/sepe2022.26133

AVALIAÇÃO DA SOLUBILIDADE E POROSIDADE DE DIFERENTES CIMENTOS ENDODÔNTICOS: REVISÃO DE LITERATURA

Juliana Casarotto¹;Rafaela Buffet Schäfer²; Julia Vendruscolo do Prado³; Alana Larissa Guedes Alves⁴; Patrícia Kolling Marquezan⁵; Mariana de Carlo Bello⁶; Mônica Pagliarini Buligon⁻; Flávia Kolling Marquezan⁶

RESUMO

Os cimentos endodônticos são classificados de acordo com sua composição química e apresentam algumas propriedades como porosidade, solubilidade, biocompatibilidade e alteração dimensional. Essas características devem ser avaliadas para que o cimento obturador selecionado cumpra seu propósito no selamento do canal radicular. Esta revisão de literatura tem como objetivo avaliar a porosidade e solubilidade de cimentos endodônticos a fim de auxiliar o cirurgião-dentista durante sua escolha. Os descritores utilizados foram "Endofill", "AH Plus", "MTA-Fillapex", "Bio Root RCS", "porosity", "solubility" e termos livres para cimentos endodônticos nas bases de dados PubMed/MEDLINE e Google Acadêmico. Foram encontrados sete artigos que avaliaram solubilidade e porosidade de diferentes cimentos endodônticos. Concluímos que, dos mais variados testes in vitro realizados, como microscopia eletrônica, mensuração da perda de massa, todos os cimentos testados apresentam solubilidade e porosidade adequadas, todavia, nenhum dos cimentos apresentou melhor desempenho que outro.

Palavras-chave: Endodontia, obturação do canal radicular, materiais restauradores do canal radicular.

Eixo Temático: Atenção Integral e Promoção à Saúde.

1. INTRODUÇÃO

A terapia endodôntica tem como finalidade a limpeza do sistema de canais radiculares bem como a sua modelagem a fim de reduzir a quantidade de bactérias presentes nesses locais. Além disso, o preenchimento dos canais radiculares

¹ Acadêmica do curso de Odontologia - Universidade Franciscana (UFN) - juliana.casarotto@ufn.edu.br

² Acadêmica do curso de Odontologia - Universidade Franciscana (UFN) - rafaela.schafer@ufn.edu.br ³ Acadêmica do curso de Odontologia - Universidade Franciscana (UFN) - julia.vendruscolo@ufn.edu.br

⁴ Acadêmica do curso de Odontologia - Universidade Franciscana (UFN) - a.alves@ufn.edu.br

⁵ Docente do curso de Odontologia - Universidade Federal de Santa Maria (UFSM) - patimarquezan@hotmail.com

⁶ Docente do curso de Odontologia - Universidade Franciscana (UFN) - mariana.bello@ufn.edu.br

⁷ Docente do curso de Odontologia - Universidade Franciscana (UFN) - monica.buligon@ufn.edu.br

⁸ Docente do curso de Odontologia - Universidade Franciscana (UFN) - flavia.marquezan@ufn.edu.br

tridimensionalmente, impede que uma nova contaminação atinja os tecidos periapicais (Vishwanath et al., 2019). Na endodontia, todas as etapas necessitam de grande atenção, sendo imprescindível que o profissional tenha embasamento científico sobre materiais utilizados e características destes, sendo de suma importância para um tratamento eficaz e duradouro.

A obturação é a última etapa de um tratamento endodôntico cujo objetivo é preencher toda a extensão do canal radicular com materiais específicos por meio de uma técnica de obturação, ou a associação delas, de modo a impedir reinfecções e auxiliar no reparo tecidual do periápice. Os materiais regularmente utilizados nesta etapa são cones de guta percha, que em altas temperaturas sofrem o processo de plastificação (Vishwanath et al., 2019) e cimentos endodônticos, responsáveis pela adesão nas paredes do canal e união dos cones de guta percha, resultando no vedamento do canal radicular.

Os cimentos endodônticos são classificados de acordo com sua composição química e apresentam algumas propriedades como porosidade, solubilidade, biocompatibilidade e alteração dimensional. Essas características devem ser avaliadas para que o cimento obturador selecionado cumpra seu propósito no selamento do canal radicular. Dessa forma, esses materiais devem seguir padrões para sua comercialização, garantindo a qualidade do produto, conforme mostra Komabayashi et al. (2019).

Sendo assim, o presente trabalho tem como objetivo avaliar a porosidade e solubilidade de cimentos endodônticos cujas marcas comerciais estejam disponíveis no mercado visando auxiliar o profissional na melhor escolha para o uso nos pacientes.

2. METODOLOGIA

A revisão de literatura foi realizada por meio de uma pesquisa bibliográfica em livros e artigos científicos sobre o tema. A busca foi realizada na base de dados PubMed/MEDLINE, além da utilização complementar do Google Acadêmico. Todas as buscas foram realizadas por um único pesquisador no período de julho a agosto de 2022. Os descritores utilizados foram "Endofill", "AH Plus", "MTA-Fillapex", "Bio

Root RCS", "porosity", "solubility" e termos livres para cimentos endodônticos. Para a união dos termos de busca, foram utilizados os operadores booleanos "AND" e "OR". Os artigos que contemplassem a temática abordada foram incluídos no estudo. Os trabalhos aquém do período temporal estipulado (últimos 10 anos), não disponíveis na íntegra, duplicados ou relacionados a capeamento pulpar não foram considerados elegíveis.

Primeiramente, os artigos por título e resumo, após, os estudos foram lidos na íntegra para incluir no estudo.

3. RESULTADOS

Dos sete estudos encontrados, seis compuseram a revisão. No quadro 1 foram sumarizados os estudos encontrados.

Título	Autores	Objetivo	Metodologia	Resultados
Effect of chlorhexidine digluconate on antimicrobial activity, cell viability and physicochemic al properties of three endodontic sealers.	Kapralos, V., Sunde, P. T., Camilleri, J., Morisbak, E., Koutroulis, A., Ørstavik, D., & Valen, H.	Analisar a solubilidade e porosidade dos cimentos AH Plus , BioRoot RCS e Pulp Canal Sealer .	imersos em água por 1	Solubilidade e porosidade foram maiores para BioRoot RCS.
Physicochemi al properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem.	Guimarães B. M., Prati C., Duarte M. A. H., Bramante C. M., Gandolfi M. G.	Analisar propriedades físico-química s como solubilidade e porosidade de dois materiais à base de silicato de cálcio (MTA Repair HP, MTA Vitalcem	MTA Vitalcem e MTA convencional foram previamente pesados para o cálculo de	MTA Vitalcem apresentou maiores valores de solubilidade, enquanto MTA Repair HP e MTA Vitalcem apresentaram valores semelhantes de porosidade.

TRABALHO COMPLETO

EDUCAÇÃO E CIÊNCIA: CAMINHOS COMPARTILHADOS

		e MTA convencional) imersos em água destilada após 24 horas usando uma balança analítica.	imersos em água destilada por 24 horas . espécimes	
Physicochemical properties and surfaces morphologies evaluation of MTA FillApex and AH plus.	Borges, Á. H., Dorileo, M. C. G. O., Villa, R. D., Borba, A. M., Semenoff, T. A. D. V., Guedes, O. A., Estrela C. R. A., Bandeca, M. C.	Avaliar a solubilidade de um cimento de resina epóxi-amina um cimento à base de MTA.	Cinco amostras de AH Plus e MTA FillApex foram imersas por 24 horas em água destilada e considerada a porcentagem de massa perdida em relação à massa inicial para a solubilidade.	O cimento à base de de MTA (MTA FillApex) apresentou maior valor de solubilidade.
Solubility, porosity and fluid uptake of calcium silicate-based cements.	Torres, F. F. E., Guerreiro-Tan omaru, J. M., Bosso-Martelo , R., Chavez-Andra de, G. M., Tanomaru Filho, M.	Avaliar os quesitos solubilidade e porosidade de corpos de prova imersos em água destilada dos cimentos White MTA Angelus, Biodentine e Cimento de Óxido de Zinco e Eugenol.	prova imersos por 7 e 30 dias, sendo a perda de massa mensurada em porcentagem.	Biodentine apresentou maior solubilidade. A maior porosidade foi encontrada no Agregado Trióxido Mineral Branco (ATMB).

EDUCAÇÃO E CIÊNCIA: CAMINHOS COMPARTILHADOS

				Universidade Franciscana
			por 7 dias e *microtomogra fia computadoriza da corpos após imersos por 7 e 30 dias. * microscopia eletrônica de varredura quando imersos a 28 dias. todas as imersões foram imersas emágua destilada.	
Solubility, porosity, dimensional and volumetric change of endodontic sealers.	Torres, F. F. E., Guerreiro-Tan omaru, J. M., Bosso-Martelo , R., Espir, C. G., Camilleri, J., & Tanomaru-Filh o, M.	Investigar e comparar valores de solubilidade e porosidade para cimentos endodônticos AH Plus, MTA Fillapex e Endofill por meio de balanças, microscopia e microscopia computadoriza da.	prova foram pesados e imersos em água destilada por 7 e 30 dias sendo a perda de massa calculada em porcentagem.	Os valores de porosidade e solubilidade foram maiores para MTA Fillapex.
The effect of pH on solubility of nano-modified endodontic	Saghiri, M. A., Godoy, F. G., Gutmann, J. L., Lotfi, M., Asatourian, A.,	Avaliar solubilidade para os cimentos white mineral	Um grupo de corpos de prova foram embebido em ácido butírico	O cimento bioaggregate apresentou maior valor para

cements.	Sheibani, N., Elyasi, M.	(BA), e nano WMTA comparado	dois grupos de	solubilidade e o ácido pode ser ainda mais prejudicado.
----------	-----------------------------	-----------------------------------	----------------	--

4. DISCUSSÕES

O cimento obturador deve apresentar bom selamento e adesão, não ser solúvel nem permeável, radiopacidade e estabilidade dimensional adequada, além de efeito antibacteriano e biocompatibilidade satisfatórios (LEONARDO, 2008). Esses materiais podem ser classificados quanto a composição química: cimentos à base de óxido de zinco e eugenol, de hidróxido de cálcio, de ionômero de vidro, resinosos, MTA e biocerâmicos (LOPES e SIQUEIRA, 2015).

Borges et al (2014) pesquisou a porosidade e solubilidade dos cimentos AH plus e MTA fillapex considerando a porcentagem média de massa perdida em relação à massa inicial, realizando cinco repetições para cada material os quais foram imersos em água destilada por 24 horas e após secagem foram pesadas e analisadas por meio de Microscopia Eletrônica de Varredura. Os resultados mostraram que o cimento MTA fillapex apresentou maior valor médio de solubilidade e porosidade com diferenças significativas quando comparado ao AH plus.

Saguiri et al (2014) avaliou a solubilidade de cimentos endodônticos nanomodificados, white mineral trioxide aggregate (WMTA), bioaggregate e nano WMTA em três diferentes pHs. A pesquisa utilizou três grupos, cada um com os três

tipos de cimentos avaliados, o grupo 1 foi envolvido com um gaze embebida em ácido butírico tamponado com fluido tecidual sintético (STF) (pH 4,4), os grupos 2 e 3 foram envolvidos com gaze embebida em STF tamponado em hidróxido de potássio em pH de 7,4 e 10,4 respectivamente por 24 horas. Para após a imersão dos corpos de prova em água ideonizada e posterior secagem para a realização da pesagem e comparação dos valores antes e depois. A pesquisa exibiu maior solubilidade dos cimentos em meio ácido. Nano WMTA apresentou a menor perda de cimento em baixo valor de pH, sugerindo que o cimento pode ser aplicado em ambientes ácidos, como inflamações periapicais.

Guimaraes et al (2017) testaram os cimentos endodônticos MTA Repair HP e o MTA Vitalcem em comparação com o MTA convencional (White MTA Angelus). Porosidade, os corpos de prova foram pesados inicialmente e imersos em água destilada por 24 horas, para posterior secagem e novamente pesados usando uma balança analítica. Para solubilidade os corpos de prova ainda levou-se em consideração o volume e número de póros abertos, obtendo como resultado maiores valores para MTA Vitalcem em solubilidade, e se comparando a MTA Repair HP quanto a porosidade.

Torres et al (2018) avaliou solubilidade e porosidade por meio de microscopia, microscopia eletrônica de varredura (MVE) e Micro-CT, das marcas comerciais White MTA Angelus, Biodentine e ainda do Cimento de Óxido de Zinco e Eugenol. A pesquisa mostrou em Biodentine um maior valor de solubilidade nos tempos de 7 e 30 dias. Ao avaliar a porosidade por microscopia e MVE, o MTA fillapex apresentou maior número de poros, em Micro-CT a porosidade total também foi maior em White MTA Angelus.

Torres et al (2019) analisou por microscopia e microscopia computadorizada, as propriedades de solubilidade e porosidade dos cimentos endodônticos AH Plus, Endofill e MTA Fillapex. Para a pesquisa de solubilidade considerou-se a perda de massa de corpos de prova os quais foram mantidos imersos em água destilada pelo tempo de 7 e 30 dias. O trabalho revela que o cimento MTA fillapex obteve a maior taxa de solubilidade em ambos os tempos. Quanto ao quesito porosidade a pesquisa avaliou por microscopia corpos de prova imersos em água destilada por 7 dias e

mostrou que o cimento MTA fillapex apresentou maiores valores seguido de Endofill e AH Plus. Já por microscopia computadorizada observou corpos de prova após a presa e após imersão em água destilada por 7 e 30 dias e MTA fillapex também apresentou maiores números.

Kapralos et al (2022) examinou a solubilidade e porosidade dos cimentos AH plus, Bio Root RCS e Pulp Canal Sealer com e sem o contato de digluconato de clorexidina. O grupo com clorexidina foi exposto e seco para a medição do volume para após a imersão em água por 1 dia, serem secos novamente e agitados no ar por 15 segundos, a massa e volume foi comparada aos espécimes que não tiveram contato com clorexidina. Os valores de Bio Root RCS para solubilidade e porosidade foram maiores quando comparados aos outros cimentos, o contato com clorexidina não modificou valores de porosidade para Bio Root RCS, entretanto a solubilidade foi significativamente diminuída.

5. CONCLUSÃO

Concluímos que, dos mais variados testes *in vitro* realizados, como microscopia eletrônica, mensuração da perda de massa, todos os cimentos testados apresentam solubilidade e porosidade adequadas, todavia, nenhum dos cimentos apresentou melhor desempenho que outro. Entretanto, o cimento AH plus apresentou menores valores para solubilidade e porosidade em dois estudos. No geral, cimentos à base de Agregado de Trióxido Mineral apresentaram maiores valores. Além disso, não se descarta a realização de revisões mais amplas, com outros delineamentos, como ensaios clínicos, para sumarizar o comportamento dos cimentos intra-orais.

REFERÊNCIAS

BORGES, Á. H. et al. Physicochemical properties and surfaces morphologies evaluation of MTA FillApex and AH plus. **The Scientific World Journal**, v. 2014, 2014.

GUIMARÃES, B. M., et al. Physicochemical properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem. **J Appl Oral Sci**, 2018.

KAPRALOS, V. et al. Effect of chlorhexidine digluconate on antimicrobial activity, cell viability and physicochemical properties of three endodontic sealers. **Dental Materials**, v. 38, n. 6, p. 1044-1059, 2022.

KOMABAYASHI, T. et al. Comprehensive review of current endodontic sealers. **Dental materials journal**, v. 39, n. 5, p. 703-720, 2020.

LEONARDO, M. R. Endodontia: tratamento de canais radiculares: princípios técnicos e biológicos, v.1 e 2, n. 24, p. 1029, São Paulo: Artes Médicas, 2008.

LOPES, H.; SIQUEIRA, J. Endodontia: biologia e técnica. 4. ed. São Paulo: **Elsevier**, 2015.

SAGHIRI, M. A. et al. The effect of pH on solubility of nano-modified endodontic cements. **Journal of Conservative Dentistry: JCD**, v. 17, n. 1, p. 13, 2014.

TORRES, F. F. E. et al. Solubility, porosity, dimensional and volumetric change of endodontic sealers. **Brazilian dental journal**, v. 30, p. 368-373, 2019.

TORRES, F. F. E. et al. Solubility, porosity and fluid uptake of calcium silicate-based cements. **Journal of Applied Oral Science**, v. 26, 2018.

VISHWANATH, V.; RAO, H. M. Gutta-percha in endodontics-A comprehensive review of material science. **Journal of conservative dentistry: JCD**, v. 22, n. 3, p. 216, 2019.